Going Beyond Standard
Security for the Java™
Platform

Otto Moerbeek
Chief Architect, Tryllian
otto@tryllian.com

M Tryllian



Outline

= Tryllian’s platform

= Standard Java security model
= Tryllian’s requirements

= Tryllian’s custom policy

Q._.-.%__



Tryllian

= Agent platform and development kit
= Runs on J2SE 1.3 VM
= Platform for distributed computing

= Targeted at open environments and
enterprises

Q.—.-.<——



Standard Security Policy
Implementation

= Classes are retrieved from server
= Network is not trusted

= Code is signed

= Policy defines the permissions

= Security Manager and class library
enforce policy

M Tryllian



Security Manager enforces
Policy

VM

CodeSource .
Security Policy

Certificate Manager grant rules

Identity

Signed

classes

Poli
— Keystore

certificates
aliases

Security manager grants permissions based on verified identity,
and according to the policy.

M Tryllian



Joe developer makes an
applet

= Joe gets certificate from CA
= Joe packs code in jar file
= Joe signs jar file using his private key

M Tryllian



Platform checks Joe’s code

= Verify signature of code
= Get Joe's certificate from jar file

= Use Joe's public key in certificate to verify
signature of classes

s Check Certificate

= Check trust chain

= Certificate of CA of Joe’s certificate should
be known

= Lookup alias of Joe in key store

= Result: verified authenticity of Joe's
code

M Tryllian



Standard permission policy

s Based on location and certificates of code
= Defined by permission policy file:

grant codeBase URL signedBy alias {

permission java.util.PropertyPermission
permission java.util.PropertyPermission
permission java.util.PropertyPermission
permission java.util.PropertyPermission
permission java.util.PropertyPermission

a lot of entries

"java.version", "read";

14
"java.vendor", "read";

J ' H
"java.vendor.url", "read";
"java.class.version", "read";
"os.name", "read";

M Tryllian



Standard policy

= Policy files have lot of entries
= Policy entries needed for each code signer
= No way of grouping permissions

= Only possible to grant permissions to known
parties

Imagine you are the Security Officer
managing a big distributed environment...

M Tryllian



Now take a look at mobile
agents

Agents are mobile components

Agents are mobile code that carry state
Agents travel from VM to VM

Agents can originate from many places

Tryllian agents run in corporate and open
distributed environment

Extra security requirements...

10

M Tryllian



Tryllian’s Security
Requirements

= Run agents from (unknown) third parties
= Platform should be protected from agents
= Agents should be protected form each other

= Resource protection: memory, CPU, files,
network, ...

Life of Security Officer should be
made more easy.

11

M Tryllian



Agents show standard
Security Model shortcomings

= No way of grouping permissions into
named roles

= Access can only be granted to known
parties

= A class can be denied access to
resources, only after a class has been
loaded

= Some potential harmful functions may
be called, e.qg. thread creation

12

M Tryllian



Tryllian’'s Custom Policy

= Roles
Enable grouping of permissions

= Delegation
Enable granting of roles to groups

Makes life of Security Officer more easy.

13

M Tryllian



What is a role?

= Role defines named set of permissions

= Role mapping defines mapping from key
store alias to role

= Result: easy way to define common set
of permissions

= Model can easily be extended to include
more expressive role definitions.

14

M Tryllian



Role interfaces

public interface Role

{ String getName();

PermissionCollection

getPermissions();

}
public interface RoleMapping

{
Role getRole(String alias);

15

M Tryllian



Define custom policy

In java.security.Policy class:

PermissionCollection
getPermissions (CodeSource codesource);

Standard policy:

class — certificate — alias — permissions

Custom policy using roles:

class — certificate — alias — role — permissions

16

M Tryllian



Next: use delegation for
granting permissions

= Use certificate chain for role assignment

= | may not know signer A, but | know and
trust the certification authority B that
issued A’s certificate

= Assign permissions based on role of
certification authority B

Enables assignment of permissions to
unknown, but trusted parties.

17

M Tryllian



DelegatingPolicy
// Assign permissions to list of certificates
public PermissionCollection getPermissions(

Certificate[] certs) {
Permissions perms = new Permissions();

Split up certificate in chains

For each chain {

Verify chain
String alias = First known alias of chain

Role r = rolemapping.getRole(alias);
Extend perms with r.getPermissions();

}

return perms;

18 M Tryllian



Define custom class loader

= Class loader's getPermission ()
determines permissions associated with
code

s [he custom class loader
DelegatingCL uses
DelegatingPolicy to determine

permissions

Result: system classes use standard policy, our
classes use custom policy.

19

M Tryllian



DelegatingCL uses this policy

public class DelegatingCL extends URLClassLoader {
public DelegatingCL(URL[] urls, ClassLoader parent,

Policy policy) {
super (urls, parent);

this.policy = policy;
}
J**
* Return permissions based on the policy of this CL
*/
protected PermissionCollection
getPermissions (CodeSource cs)

return policy.getPermission(cs);

20 M Tryllian



Summary
Tryllian’s custom policy

= Build on top of standard mechanism
= Assigns roles to groups of developers

= Roles and delegation make life of
Security Officer more easy

21

M Tryllian



But there are more Issues...

= Preventing code entering the VM
= Controlling scarce resource usage

22

Q._.-.%__



Preventing class loading

= We can assign permissions only after a
class has been loaded

= We would like to prevent class loading
and initialization

Solution:
= Define a new class load permission

= Check for that permission in
findClass()

23

Q._.-.%__



New: ClassLoadPermission

public class ClassLoadPermission extends
java.security.BasicPermission

{

public ClassLoadPermission(String name)

{

super (name) ;

public ClassLoadPermission(String name, String action)

{

super (name, action);

24 M Tryllian



DelegatingCL.findClass

protected Class findClass(final String name)
throws ClassNotFoundException

// Try to load the class using the URL class loader
final Class loadedClass = super.findClass (name);

// If the class is loaded, get its protection domain.
ProtectionDomain pd = (ProtectionDomain)
AccessController.doPrivileged (
new PrivilegedAction() {
public Object run() {
return loadedClass.getProtectionDomain();

P}

25 M Tryllian



findClass continued

// If the protection domain is lacking
// ClassLoadPermission, do as if the class could not
// be found.

if (!pd.implies(new ClassLoadPermission(name))) {
throw new ClassNotFoundException(name);

}

return loadedClass;

26

M Tryllian



Protecting Scarce Resources

= Protect physical resources like
« CPU
= Files system
= Network I/O
= Memory

= from
= Evil code
=« Mistakes easily made...

27

M Tryllian



Can do: prevent creation of
threads

= Normally any code may create threads
outside the system thread group

= \We can prevent thread creation by

checking for
modifyThreadGroupPermission for

any thread group

= Add the following method to security
manager:

28

M Tryllian



checkAccess

/** Check access to the ThreadGroup */

public void checkAccess (ThreadGroup g) {
// First do the standard security check
super .checkAccess(9g);

// Now do the more strict check: check if the
// proper permission is there for any thread group
checkPermission (

new RuntimePermission("modifyThreadGroup"));

29

M Tryllian



Thread control not really
possible

= If a piece of code has a thread, it owns the
thread
= [here is no guaranteed way to stop a thread!

= Methods are there, but are of no use
= Thread.interrupt()
= Thread.destroy()
= Thread.stop()

= Priority mechanism: also no guarantees
= Conclusion: no thread or CPU resource
control possible :-(

30

M Tryllian



Other types of resources

= Memory control permissions:
nonexistent

= Same for file and network |/O
= Room for improvement!

31

Q._.-.%__



Summary

= Custom policy enables roles and
delegation

= We can prevent class loading and code
execution

= Resource control is only partially
possible

32

M Tryllian



Future

= Cooperative multitasking with incentives

= Stimulate good behavior, punish bad
behavior.

= If an agent really misbehaves, disallow
access.

= Agent passport

= Determine permissions based on identity
and travel history: use JAAS.

= Resource control
= Need VM support for this (please!)

33

M Tryllian



Thank you!

= Sample code:
http://www.tryllian.com/

download/jlexamples.tar.gz

= More info:
http://www.tryllian.com

= Questions?
= Email: ottoltryllian.com

34

M Tryllian



