
G
oing B

eyond S
tandard

S
ecurity for the Java™

P
latform

O
tto M

oerbeek
C

hief A
rchitect, T

ryllian

otto@tryllian.com

2

O
utline

n
T

ryllian’s platform

n
S

tandard Java security m
odel

n
T

ryllian’s requirem
ents

n
T

ryllian’s custom
 policy

3

T
ryllian

n
A

gent platform
 and developm

ent kit

n
R

uns on J2S
E

 1.3 V
M

n
P

latform
 for distributed com

puting

n
T

argeted at open environm
ents and

enterprises

4

S
tandard S

ecurity P
olicy

Im
plem

entation
n

C
lasses are retrieved from

 server

n
N

etw
ork is not trusted

n
C

ode is signed

n
P

olicy defines the perm
issions

n
S

ecurity M
anager and class library

enforce policy

5

S
ecurity M

anager enforces
P

olicy

Security m
anager grants perm

issions based on verified identity,
and according to the policy.

6

Joe developer m
akes an

applet

n
Joe gets certificate from

 C
A

n
Joe packs code in jar file

n
Joe signs jar file using his private key

7

P
latform

 checks Joe’s code

n
V

erify signature of code
n

G
et Joe’s certificate from

 jar file
n

U
se Joe’s public key in certificate to verify

signature of classes

n
C

heck C
ertificate

n
C

heck trust chain
n

C
ertificate of C

A
 of Joe’s certificate should

be know
n

n
Lookup alias of Joe in key store

n
R

esult: verified authenticity of Joe’s
code

8

S
tandard perm

ission policy

n
B

ased on location and certificates of code
n

D
efined by perm

ission policy file:

grant codeBase URL signedBy alias {
permission java.util.PropertyPermission "java.version", "read";
permission java.util.PropertyPermission "java.vendor", "read";
permission java.util.PropertyPermission "java.vendor.url", "read";
permission java.util.PropertyPermission "java.class.version", "read";
permission java.util.PropertyPermission "os.name", "read";

 … a lot of entries
};

9

S
tandard policy

n
P

olicy files have lot of entries
n

P
olicy entries needed for each code signer

n
N

o w
ay of grouping perm

issions
n

O
nly possible to grant perm

issions to know
n

parties

Im
agine you are the S

ecurity O
fficer

m
anaging a big distributed environm

ent…

1
0

N
ow

 take a look at m
obile

agents
n

A
gents are m

obile com
ponents

n
A

gents are m
obile code that carry state

n
A

gents travel from
 V

M
 to V

M
n

A
gents can originate from

 m
any places

n
T

ryllian agents run in corporate and open
distributed environm

ent

E
xtra security requirem

ents…

1
1

T
ryllian’s S

ecurity
R

equirem
ents

n
R

un agents from
 (unknow

n) third parties

n
P

latform
 should be protected from

 agents

n
A

gents should be protected form
 each other

n
R

esource protection: m
em

ory, C
P

U
, files,

netw
ork, …

Life of S
ecurity O

fficer should be

m
ade m

ore easy.

1
2

A
gents show

 standard
S

ecurity M
odel shortcom

ings

n
N

o w
ay of grouping perm

issions into
nam

ed roles
n

A
ccess can only be granted to know

n
parties

n
A

 class can be denied access to
resources, only after a class has been
loaded

n
S

om
e potential harm

ful functions m
ay

be called, e.g. thread creation

1
3

T
ryllian’s C

ustom
 P

olicy

n
R

oles
E

nable grouping of perm
issions

n
D

elegation
E

nable granting of roles to groups

M
akes life of S

ecurity O
fficer m

ore easy.

1
4

W
hat is a role?

n
R

ole defines nam
ed set of perm

issions

n
R

ole m
apping defines m

apping from
 key

store alias to role

n
R

esult: easy w
ay to define com

m
on set

of perm
issions

n
M

odel can easily be extended to include
m

ore expressive role definitions.

1
5

public interface Role
{}public interface RoleMapping
{} R

ole interfaces

String getName();
PermissionCollection
 getPermissions();

Role getRole(String alias);

1
6

D
efine custom

 policy
In java.security.Policy

class:
PermissionCollection
getPermissions(CodeSource codesource);

S
tandard policy:

class Æ
 certificate Æ

 alias Æ
 perm

issions

C
ustom

 policy using roles:

class Æ
 certificate Æ

 alias Æ
 role Æ

 perm
issions

1
7

N
ext: use delegation for

granting perm
issions

n
U

se certificate chain for role assignm
ent

n
I m

ay not know
 signer A

, but I know
 and

trust the certification authority B
 that

issued A
’s certificate

n
A

ssign perm
issions based on role of

certification authority B

E
nables assignm

ent of perm
issions to

unknow
n, but trusted parties.

1
8

D
elegatingP

olicy
// Assign permissions to list of certificates
public PermissionCollection getPermissions(

Certificate[] certs) {
 Permissions perms = new Permissions();

 return perms;
}

Split up certificate in chains
For each chain {

Verify chain
String alias = First known alias of chain
Role r = rolemapping.getRole(alias);
Extend perms with r.getPermissions();

}

1
9

D
efine custom

 class loader

n
C

lass loader’s getPermission()
determ

ines perm
issions associated w

ith
code

n
T

he custom
 class loader

DelegatingCL
 uses

DelegatingPolicy
 to determ

ine
perm

issions

R
esult: system

 classes use standard policy, our
classes use custom

 policy.

2
0

D
elegatingC

L uses this policy

public class DelegatingCL extends URLClassLoader {
 public DelegatingCL(URL[] urls, ClassLoader parent,

 Policy policy) {

} /**
 * Return permissions based on the policy of this CL
 */
 protected PermissionCollection

getPermissions(CodeSource cs)
 {

 }
} super(urls, parent);
 this.policy = policy;

return policy.getPermission(cs);

2
1

S
um

m
ary

T
ryllian’s custom

 policy
n

B
uild on top of standard m

echanism

n
A

ssigns roles to groups of developers

n
R

oles and delegation m
ake life of

S
ecurity O

fficer m
ore easy

2
2

B
ut there are m

ore issues…

n
P

reventing code entering the V
M

n
C

ontrolling scarce resource usage

2
3

P
reventing class loading

n
W

e can assign perm
issions only after a

class has been loaded
n

W
e w

ould like to prevent class loading
and initialization

S
olution:

n
D

efine a new
 class load perm

ission
n

C
heck for that perm

ission in
findClass()

2
4

N
ew

: C
lassLoadP

erm
ission

public class ClassLoadPermission extends
java.security.BasicPermission

{ public ClassLoadPermission(String name)
 {
 super(name);
 }

 public ClassLoadPermission(String name, String action)
 {
 super(name, action);
 }
}

2
5

 protected Class findClass(final String name)
 throws ClassNotFoundException
 { // Try to load the class using the URL class loader
 final Class loadedClass = super.findClass(name);

D
elegatingC

L.findC
lass

// If the class is loaded, get its protection domain.
 ProtectionDomain pd = (ProtectionDomain)

AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {

return loadedClass.getProtectionDomain();
 }});

2
6

findC
lass continued

 // If the protection domain is lacking
 // ClassLoadPermission, do as if the class could not
 // be found.

 if (!pd.implies(new ClassLoadPermission(name))) {
 throw new ClassNotFoundException(name);
 }
 return loadedClass;
}

2
7

P
rotecting S

carce R
esources

n
P

rotect physical resources like
n

C
P

U
n

F
iles system

n
N

etw
ork I/O

n
M

em
ory

n
from
n

E
vil code

n
M

istakes easily m
ade…

2
8

C
an do: prevent creation of

threads

n
N

orm
ally any code m

ay create threads
outside the system

 thread group
n

W
e can prevent thread creation by

checking for
modifyThreadGroupPermission

for
any thread group

n
A

dd the follow
ing m

ethod to security
m

anager:

2
9

/** Check access to the ThreadGroup */
public void checkAccess(ThreadGroup g) {
 // First do the standard security check
 super.checkAccess(g);

} checkA
ccess

 // Now do the more strict check: check if the
 // proper permission is there for any thread group
 checkPermission(

new RuntimePermission("modifyThreadGroup"));

3
0

T
hread control not really

possible

n
If a piece of code has a thread, it ow

ns the
thread

n
T

here is no guaranteed w
ay to stop a thread!

n
M

ethods are there, but are of no use
n
Thread.interrupt()

n
Thread.destroy()

n
Thread.stop()

n
P

riority m
echanism

: also no guarantees
n

C
onclusion: no thread or C

P
U

 resource
control possible :-(

3
1

O
ther types of resources

n
M

em
ory control perm

issions:
nonexistent

n
S

am
e for file and netw

ork I/O

n
R

oom
 for im

provem
ent!

3
2

S
um

m
ary

n
C

ustom
 policy enables roles and

delegation

n
W

e can prevent class loading and code
execution

n
R

esource control is only partially
possible

3
3

F
uture
n

C
ooperative m

ultitasking w
ith incentives

n
S

tim
ulate good behavior, punish bad

behavior.
n

If an agent really m
isbehaves, disallow

access.

n
A

gent passport
n

D
eterm

ine perm
issions based on identity

and travel history: use JA
A

S
.

n
R

esource control
n

N
eed V

M
 support for this (please!)

3
4

T
hank you!

n
S

am
ple code:

http://www.tryllian.com/
 download/j1examples.tar.gz

n
M

ore info:
http://www.tryllian.com

n
Q

uestions?
n

E
m

ail:
otto@tryllian.com

